Detection and thin-layer chromatography of derivatives of ethyleneimine

I. N-Carbamoyl aziridines

Ethyleneimine and its derivatives (substituted aziridines) have extensive industrial and biomedical application. For example, N-substituted^{1,2}, N-carba-moyl³, sulfur^{4,5} and phosphorus⁶⁻¹⁰ containing aziridines have been utilized as insect chemosterilants. Other areas of utility of aziridines include neoplasm¹¹⁻¹⁴ and monoamine oxidase inhibitors¹⁵, ion-exchange copolymers¹⁶, wear and water proofing¹⁷, textile¹⁸⁻²⁰ and paper-improving agents^{21,22}.

The analysis of aziridines has been effected via colorimetric techniques utilizing γ -(4-nitrobenzyl)-pyridine²³ and 1,2-naphthoquinone-4-sulfonate^{24,25}, and direct^{26,27} and potentiometric titrations²⁸. Gas chromatography of aziridines has been limited to cis- and trans-alkyl derivatives²⁹. Thin-layer chromatography has been utilized by BEROZA AND BOŘKOVEC³⁰ for the investigation of the stability of Tepa, Metepa and Tretamine.

The present study relates to an investigation of the utility of both thin-layer chromatographic techniques and detecting reagents (primarily pi-electron acceptors) for the separation and identification of aryl-N-carbamoyl aziridines and to concomittantly elaborate the effect of structure on their chromatographic behavior in several solvent systems.

Experimental

Thin-layer chromatography. The silicic acid chromatoplates were prepared according to the method of MORLEY AND CHIBA³¹. Silica-gel DF-5* was applied on 8×8 in. plates to a thickness of 280μ . After air-drying, the plates were activated in an oven for 30 min. Acetone solutions ($I-2 \mu$ l containing $I-I0 \mu g/\mu$ l) of test substance were applied along a line 2.5 cm from the lower end of the plate and developed by the ascending method. After evaporation of the solvent, the spots were located by U.V. detection, then sprayed with one of the chromogenic reagents and the initial color development as well as subsequent color changes noted. The sprayed plates were then exposed briefly to ammonia vapors with the results described in Table I. The developing solvent systems utilized in this work were:

(A) Acetone-methanol-water (20:10:70)³²

(B) Benzene-ethyl acetate (80:20)³²

(C) 2.5 % Acetone in benzene

Detecting reagents. The following were used:

(1) DDQ reagent: 2 % 2,3-dichloro-5,6-dicyano-1,4-benzoquinoneimine in benne.

zene.

- (2) TCNE reagent: 2 % tetracyanoethylene in benzene.
- (3) Gibbs reagent: 2% 2,6-dibromo-N-chloro-*p*-benzoquinoneimine in benzene.
- (4) NPB reagent: 5 % γ -(4-nitrobenzyl)-pyridine in acetone.
- (5) Rhodamine-B: 0.5 % rhodamine-B in acetone.

Materials. The N-carbamoyl aziridines and methyl aziridines were prepared via the reaction of ethyleneimine or propyleneimine with the appropriate isocyanate and

^{*} Obtained from Camag, Muttenz, Switzerland.

J. Chromatog., 26 (1967) 522-526

NOTES

TABLE I			
SPOT COLORS OF N-CARBAMOYL	AZIRIDINES ON	SILICA GEL	DF-5

$$\begin{array}{c|c} \mathbf{R} & \mathbf{CH}_2 \\ \mathbf{N} - \mathbf{C} - \mathbf{N} & | \\ \mathbf{H} & \mathbf{O} \\ \mathbf{H} & \mathbf{CH}_2 \end{array}$$

Colors developed at room temperature: B = blue; Bg = beige; Bl = black; Bn = brown; C = crimson; G = green; Gr = grey; L = lilac; M = magenta; Ma = maroon; O = orange; Ol = olive; P = purple; Pk = pink; T = tan; Y = yellow; V = violet.

Detecting reagents									
Before NH ₃ exposure			After NH ₃ exposure						
I	2	3	4**	5	I	2	3	4	5
Bn Bn Bn B-Bn B-Bn B L-B Ol Gr B-G O B-Gr B G Y O-T O O P	$Bn \rightarrow Y$ $T \rightarrow Y$ $T \rightarrow Y$ T $T \rightarrow Y$ T	$B \rightarrow Pk \\ B \rightarrow Pk \\ B \rightarrow Pk \\ B \rightarrow Pk \\ B \rightarrow Pk \\ Pk \\ O \\ O - C \\ O \\ O \\ Y \\ Y \\ O \\ O - C \\ O - C \\ O \\ Y \\ Y \\ Y \\ Y \\ Y \\ O \\ O \\ O \\ O$	B-V B-V B-V P P P P P P P P P P P P P P P P P P P	M/O* M/O* M/O* M/O* M/O* M/O* M/O* M/O*	0-C 0-C 0-C 0-C	Y-O Y-O Y-O Y-G Y-G Y-G Y-G Y-G Y-G Y-G Y-G Y-G Y-G	Y-G Y-G Y-G Y-G T Bn T Bn Bn T Bn Bn T Bn Bn Y Y Bn Bn Bn Sn Bn Bn Bn Bn Bn Bn Bn Bn Bn Bn Bn Bn Bn		M M M M M M M M M M M M M M M M M M M
	Before I Bn Bn Bn Bn Bn B-Bn B-Bn B-Bn B-C Ol Gr B-G O B-Gr B B-Gr B G Y O-T O O	Before $NH_3 expo$ I2I2Bn $T \rightarrow Y$ Bn $T \rightarrow Y$ BnTBnT -> YB-BnTBOlL-BOlOlY-TGrMaB-GrYBY-GBG-GrGG-GrGG-GrGY-OOY-OOY-OOY-OOY-OOY-OOY-OOY-OOY-OOY-OOY-OOY-OOY-OOY-OOYPY	$\begin{tabular}{ c c c c c } \hline Before & NH_3 exposure \\ \hline I & 2 & 3 \\ \hline I & 2 & 3 \\ \hline I & 1 & 2 & 3 \\ \hline I & 1 & 2 & 3 \\ \hline I & 1 & 1 & 3 & 3 & 3 \\ \hline I & 1 & 1 & 3 & 3 & 3 & 3 \\ \hline I & 1 & 1 & 3 & 3 & 3 & 3 & 3 \\ \hline I & 1 & 1 & 3 & 3 & 3 & 3 & 3 \\ \hline I & 1 & 1 & 3 & 3 & 3 & 3 & 3 \\ \hline I & 1 & 1 & 3 & 3 & 3 & 3 & 3 \\ \hline I & 1 & 1 & 3 & 3 & 3 & 3 & 3 \\ \hline I & 1 & 1 & 1 & 3 & 3 & 3 & 3 \\ \hline I & 1 & 1 & 1 & 3 & 3 & 3 & 3 \\ \hline I & 1 & 1 & 1 & 3 & 3 & 3 & 3 \\ \hline I & 1 & 1 & 1 & 3 & 3 & 3 & 3 \\ \hline I & 1 & 1 & 1 & 3 & 3 & 3 & 3 \\ \hline I & 1 & 1 & 1 & 3 & 3 & 3 & 3 \\ \hline I & 1 & 1 & 1 & 3 & 3 & 3 & 3 \\ \hline I & 1 & 1 & 1 & 3 & 3 & 3 & 3 \\ \hline I & 1 & 1 & 1 & 3 & 3 & 3 & 3 \\ \hline I & 1 & 1 & 1 & 3 & 3 & 3 & 3 \\ \hline I & 1 & 1 & 1 & 3 & 3 & 3 & 3 \\ \hline I & 1 & 1 & 1 & 3 & 3 & 3 & 3 \\ \hline I & 1 & 1 & 1 & 3 & 3 & 3 & 3 \\ \hline I & 1 & 1 & 1 & 1 & 3 & 3 & 3 \\ \hline I & 1 & 1 & 1 & 1 & 3 & 3 & 3 \\ \hline I & 1 & 1 & 1 & 1 & 1 & 3 & 3 & 3 \\ \hline I & 1 & 1 & 1 & 1 & 1 & 3 & 3 & 3 \\ \hline I & 1 & 1 & 1 & 1 & 1 & 1 & 3 & 3 \\ \hline I & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ \hline I & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ \hline I & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ \hline I & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ \hline I & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ \hline I & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ \hline I & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ \hline I & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ \hline I & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ \hline I & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 &$	Before NH_3 exposureI23 4^{**} Bn $T \rightarrow Y$ $B \rightarrow Pk$ $B \cdot V$ Bn $T \rightarrow Y$ $B \rightarrow Pk$ $B \cdot V$ Bn $T \rightarrow Y$ $B \rightarrow Pk$ $B \cdot V$ Bn $T \rightarrow Y$ $B \rightarrow Pk$ $B \cdot V$ Bn $T \rightarrow Y$ $B \rightarrow Pk$ $B \cdot V$ Bn $T \rightarrow Y$ $B \rightarrow Pk$ $B \cdot V$ Bn $T \rightarrow Y$ $B \rightarrow Pk$ $B \cdot V$ B BnOlOPB OlO -CPOl $Y \cdot T$ OPGrMaOPB -GrYYPB -GrYYPB -GrYYPB -GrYYPO -TY -OYPO -TY -OYPOYYPOYYPPYOP	Before NH_3 exposureI23 4^{**} 5Bn $T \rightarrow Y$ $B \rightarrow Pk$ $B \cdot V$ M/O^* Bn $T \rightarrow Y$ $B \rightarrow Pk$ $B \cdot V$ M/O^* Bn $T \rightarrow Y$ $B \rightarrow Pk$ $B \cdot V$ M/O^* Bn $T \rightarrow Y$ $B \rightarrow Pk$ $B \cdot V$ M/O^* Bn $T \rightarrow Y$ $B \rightarrow Pk$ $B \cdot V$ M/O^* Bn $T \rightarrow Y$ $B \rightarrow Pk$ $B \cdot V$ M/O^* B-Bn T Pk $P \cdot M/O^*$ B-OlO P M/O^* BOl $O - C$ P M/O^* Gr Ma O $P \cdot T$ O P M/O^* $B \cdot G$ $P \cdot T$ O $Y \cdot O$ Y $M = P M/O^*$ $P M/O^*$ $B - Gr$ $P \cdot Y$ $P M/O^*$ $B - Gr$ $Y \cdot Y$ $P M/O^*$ $B - Gr$ $G - C$ $P M/O^*$ $B - G - Gr$ $O - C$ $P M/O^*$ $P - Y - O$ Y $P M/O^*$ $O - Y - O$ Y $P M/O^*$ $O - Y - O$ Y $P M/O^*$ $P - Y$ O $P M/O^*$ $B - B - B = O - C$ $P M/O^*$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	After $NH_3 exposure$ I234**5I234I234**5I234I234**5I234I234**5I234I234**5I234I234**5I234I1234**5I234I1234**5I234I123441234I111111111111I1112344111<

* Fluorescence after spraying.

** Color development after 2 min at 85°.

recrystallized from benzene or anhydrous ether according to the procedure of Box-KOVEC AND WOODS³.

Results and discussion

Table I depicts the spot colors of alkyl and aryl-N-carbamoyl aziridines on silica gel DF-5 plates obtained with five detecting reagents before and after exposure to ammonia vapors. Tables II en III depict the R_F values of N-carbamoyl aziridines and methyl aziridines respectively.

A number of cogent observations can be made in respect to the chromogenic behavior of alkyl and isomeric aryl-N-carbamoyl aziridines, as well as to the general utility of pi-electron detecting reagents utilized, *viz*.:

(I) The isomeric chlorophenyl, dichlorophenyl, tolyl and methoxyphenyl de-

TABLE II

 R_F values imes 100 of alkyl and aryl-N-Carbamoyl aziridines

12		CH2
N- 	-C	-N CH ₂
H	0	

<i>R</i>	M.p. or $b.p.$	Solvents		
	(°C/mm)	Ā	B	С
Methyl	38 39 (10)	33	9	6
Ethyl	54- 56 (10)	39	14	10
n-Propyl	65- 66 (10)	43	18	15
Isopropyl	50- 52	40	15	II
n-Butyl	85- 87 (4)	47	20	18
Cyclohexyl	68- 70	54	25	21
Phenyl	81- 82	57	28	23
p-Bromophenyl	140-141	58	35	31
o-Chlorophenyl	52- 53	65	41	35
<i>m</i> -Chlorophenyl	93- 95	58	36	29
p-Chlorophenyl	133-135	53	30	25
2,5-Dichlorophenyl	84- 85	69	50	39
3.4-Dichlorophenyl	104-105	64	46	32
p-Fluorophenyl	73- 74	45	1.8	9
o-Methoxyphenyl	64- 65	61	38	35
p-Methoxyphenyl	114-116	56	34	30
o-Nitrophenyl	227-230	72	51	44
m-Nitrophenyl	135-137	66	46	38
p-Nitrophenyl	171-172	61	42	32
p-Cyanophenyl	131-133	65	44	34
o-Tolyl	74- 76	59	37	28
m-Tolyl	71- 72	61	35	32
p-Tolyl	98-100	55	30	27
∝-Naphthyl	108-109	59	37	28

rivatives can be distinguished from one another utilizing preferentially the DDQ reagent or secondarily the TCNE reagent.

(2) The isomeric chlorophenyl and dichlorophenyl derivatives can be differentiated from one another utilizing the DDQ reagent as the reagent of choice.

(3) The alkyl derivatives can be distinguished from the general class of aryl derivatives of both the aziridines and methyl aziridines utilizing primarily the DDQ reagent.

(4) For the pi-electron detectors, the order of decreasing utility for the detection and differentiation of the isomeric aryl derivatives of both N-carbamoyl aziridines and methyl aziridines: DDQ > TCNE >> Gibbs.

The general utility of pi-electron acceptors such as DDQ and TCNE for the detection and differentiation of thin-layer chromatograms of isomeric aryl derivatives has been demonstrated previously for sulfoxides, sulfones and sulfides³³ and chlorophenols³⁴.

(5) The utility of exposing the chromatoplates to ammonia vapors after spraying is most apparent for additional differentiation of the alkyl from the aryl derivatives of both the aziridines and methyl aziridines.

NOTES

R

TABLE III

 R_F values imes 100 of alkyl and aryl-N-carbamoyl methyl aziridines

Solvents

$\begin{array}{c} R \\ N \\ H \\ H \\ H \\ \end{array} \begin{array}{c} C \\ H \\ C \\ H_{2} \end{array} \begin{array}{c} C \\ H \\ C \\ C \\ H_{2} \end{array} $	
	M.p. or b.p. (°C/mm)

~ - -

	(°Ċ/mm)	Ā	В	С	
Methvl	43- 44 (10)	36	II	8	
Ethyl	59- 61 (10)	41	15	12	
n-Propyl	70- 71 (10)	47	19	17	
Isopropyl	54- 56	44	15	12	
n-Butyl	86- 87 (0.2)	50	23	22	
Cyclohexyl	69-71	51	25	24	
Phenyl	63- 64	54	27	27	
p-Bromophenyl	77- 79	58	38	38	
o-Chlorophenyl	72- 74	62	43	46	
m-Chlorophenyl	98- 100	56	39	4 I	
p-Chlorophenyl	87- 89	5 I	35	35	
2,5-Dichlorophenyl	56- 58	70	55	40	
3,4-Dichlorophenyl	80- 82	66	50	36	
p-Fluorophenyl	83- 85	39	31	30	
o-Methoxyphenyl	43- 44	62	39	40	
p-Methoxyphenyl	75- 77	56	34	37	
o-Nitrophenyl	228-230	75	49	45	
m-Nitrophenyl	99-101	70	44	40	
p-Nitrophenyl	104–106	65	40	36	
p-Cyanophenyl	93- 95	62	46	38	
o-Tolyl	64- 67	57	43	45	
m-Tolyl	48- 50	50	37	38	
p-Tolyl	53- 55	45	32	33	
a-Naphthyl	116-117	63	41	34	

Correlation of R_F values with structure

In addition to the solvents utilized in this study (solvent systems A-C) the following solvent systems were evaluated and rejected because of their less overall utility in effecting separations with the majority of the aryl derivatives of both aziridines and methyl aziridines:

Benzene-acetic acid-water (125:72:3);

Hexane-ethyl ether (I:I);

Benzene-methanol-acetone (80:20:20).

The alkyl and isomeric aryl derivatives of N-carbamoyl aziridines and methyl aziridines have been best separated in this study on silica gel DF-5 plates utilizing solvent A (acetone-methanol-water (20:10:70) and secondarily solvent B (benzene-ethyl acetate (80:20). The order of R_F values for the chlorophenyl and tolyl derivatives of both series, in all the solvent systems tested, was o > m > p. The order of R_F values for the methoxyphenyl derivatives of both series was o > p in all the solvent systems.

For the dichlorophenyl derivatives, in all solvent systems, 2,5>3,4.

The influence of functionality in the *para* position of N-aryl derivatives of both series is shown in the following order of R_F values: NO₂, CN>Br, OCH₃>Cl>CH₃>F.

It has not been found possible in this study to effect significant separations of members of the aziridine group from the analogous derivatives of the N-carbamovl methyl aziridines.

A cknowledgements

This study was supported by Research Contract PH 43-64-57 National Cancer Institute, National Institutes of Health, Public Health Service and represents Paper No. 27 of this Contract. The technical assistance of Mrs. P. H. TURNER in this study is gratefully acknowledged.

Bionetics Research Laboratories, Inc., Falls Church, Va. (U.S.A.) LAWRENCE FISHBEIN

- 1 A. B. BOŘKOVEC, Residue Rev., 6 (1964) 87.
- 2 C. W. WOODS, A. B. BORKOVEC AND F. M. HART, J. Med. Chem., 7 (1964) 371.
- 2 C. W. WOODS, A. B. BORKOVEC AND F. M. HART, J. Mea. Chem., 7 (1)
 3 A. B. BOŘKOVEC AND C. W. WOODS, J. Med. Chem., 8 (1965) 545.
 4 A. B. BOŘKOVEC AND C. W. WOODS, Advan. Chem. Ser., 41 (1963) 47.
 5 J. C. PARISH AND B. W. ARTHUR, J. Econ. Entomol., 58 (1965) 699.
 6 S. C. CHANG AND A. B. BOŘKOVEC, J. Econ. Entomol., 57 (1964) 488.
 7 W. J. HAYES, Jr., Bull. World Health Organ., 31 (1964) 721.
 8 G. C. LABREQUE, J. Econ. Entomol., 54 (1961) 684.
 6 T. L. HENNEBERRY AND A. N. KISHABA J. Econ. Eviamol. 50 (1966)

- 9 T. J. HENNEBERRY AND A. N. KISHABA, J. Econ. Entomol., 59 (1966) 156.
- 10 A. B. BOŘKOVEC, Science, 137 (1962) 1034.
- 11 M. UCHIDA AND H. TAKAGI, Gann, 48 (1957) 205.
- 12 L. F. LARIONOV, Acta Unio Intern. Contra Cancrum, 13 (1957) 393; C.A., 52 (1958) 4853. 13 O. V. ZUBOVA, Tr. Inst. Eksperim. i Klinich. Onkol., Akad. Med. Nauk SSSR, 2 (1960) 75; C.A., 60 (1964) 1010.
- 14 S. S. BROWN, in S. GARATTINI AND P. A. SHORE (Editors), Advances in Pharmacology, Vol. 2, Academic Press, New York, 1963, p. 243.

- 15 J. N. WELLS, A. V. SHIRODKAR AND A. M. KNEVEL, J. Med. Chem., 9 (1966) 195.
 16 G. MANECKE AND K. H. HELLER, Ger. Pat., 1,160,183, Dec. 27 (1963); C.A., 60 (1964) 9440.
 17 Y. OHARA, Japan Pat., 12,232, Aug. 30 (1960); C.A., 55 (1961) 10914.
 18 F. B. JONES, H. G. HAMMON, R. I. LEININGER AND R. G. HEILIGMANN, Textile Res. J., 31 (1961) 57.
- 19 E. FRIESER, Z. Ges. Textil- Ind., 60 (1958) 977; C.A., 53 (1959) 8636.
- 20 P. S. UGRYUMOV, Tekstil Prom., 20, No. 7 (1960) 45.
- 21 H. S. STANGER AND W. SANNE, Brit. Pat., 985,716, March 10 (1965); C.A., 62 (1965) 16507.
- 22 R. E. REIZIN AND A. TUPURAINE, Tr. Inst. Lesokhoz. Probl. i Khim. Drevesiny, Akad. Nauk Latv. SSR., 25 (1963) 107; C.A., 60 (1964) 8225.
- 23 J. EPSTEIN, R. W. ROSENTHAL AND R. J. ESS, Anal. Chem., 27 (1955) 1435.
- 24 D. H. ROSENBLATT, P. HLINKA AND J. EPSTEIN, Anal. Chem., 27 (1955) 1290.
- 25 T. R. CROMPTON, Analysi, 90 (1965) 107.
- 26 R. R. JAY, Anal. Chem., 36 (1964) 667.
- 27 E. ALLEN AND W. SEAMEN, Anal. Chem., 27 (1955) 540.
- 28 M. LIDAKS, J. LICIS AND A. VEISS, Akad. Vestis, No. 2 (1960) 101; C.A., 55 (1961) 25602.

- 29 R. L. VANETTEN AND A. T. BOTTINI, J. Chromatog., 21 (1966) 408. 30 M. BEROZA AND A. B. BOŘKOVEC, J. Med. Chem., 7 (1964) 44. 31 H. V. MORLEY AND M. CHIBA, J. Assoc. Offic. Agr. Chemists, 47 (1964) 806.
- 32 D. O. EBERLE AND F. A. GUNTHER, J. Assoc. Offic. Agr. Chemists, 48 (1965) 927.
- 33 L. FISHBEIN AND J. FAWKES, J. Chromatog., 22 (1966) 323.
- 34 L. FISHBEIN, J. Chromatog., 24 (1966) 245.

Received July 1st, 1966

J. Chromatog., 26 (1967) 522-526